Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nat Commun ; 15(1): 1210, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331934

RESUMO

We implicated the X-chromosome THOC2 gene, which encodes the largest subunit of the highly-conserved TREX (Transcription-Export) complex, in a clinically complex neurodevelopmental disorder with intellectual disability as the core phenotype. To study the molecular pathology of this essential eukaryotic gene, we generated a mouse model based on a hypomorphic Thoc2 exon 37-38 deletion variant of a patient with ID, speech delay, hypotonia, and microcephaly. The Thoc2 exon 37-38 deletion male (Thoc2Δ/Y) mice recapitulate the core phenotypes of THOC2 syndrome including smaller size and weight, and significant deficits in spatial learning, working memory and sensorimotor functions. The Thoc2Δ/Y mouse brain development is significantly impacted by compromised THOC2/TREX function resulting in R-loop accumulation, DNA damage and consequent cell death. Overall, we suggest that perturbed R-loop homeostasis, in stem cells and/or differentiated cells in mice and the patient, and DNA damage-associated functional alterations are at the root of THOC2 syndrome.


Assuntos
Deficiência Intelectual , Fatores de Transcrição , Humanos , Masculino , Camundongos , Animais , Fatores de Transcrição/metabolismo , Estruturas R-Loop , Transporte Ativo do Núcleo Celular , Deficiência Intelectual/genética , Dano ao DNA , Fenótipo , RNA Mensageiro/metabolismo
2.
Genes (Basel) ; 14(8)2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37628618

RESUMO

Aicardi Syndrome (AIC) is a rare neurodevelopmental disorder recognized by the classical triad of agenesis of the corpus callosum, chorioretinal lacunae and infantile epileptic spasms syndrome. The diagnostic criteria of AIC were revised in 2005 to include additional phenotypes that are frequently observed in this patient group. AIC has been traditionally considered as X-linked and male lethal because it almost exclusively affects females. Despite numerous genetic and genomic investigations on AIC, a unifying X-linked cause has not been identified. Here, we performed exome and genome sequencing of 10 females with AIC or suspected AIC based on current criteria. We identified a unique de novo variant, each in different genes: KMT2B, SLF1, SMARCB1, SZT2 and WNT8B, in five of these females. Notably, genomic analyses of coding and non-coding single nucleotide variants, short tandem repeats and structural variation highlighted a distinct lack of X-linked candidate genes. We assessed the likely pathogenicity of our candidate autosomal variants using the TOPflash assay for WNT8B and morpholino knockdown in zebrafish (Danio rerio) embryos for other candidates. We show expression of Wnt8b and Slf1 are restricted to clinically relevant cortical tissues during mouse development. Our findings suggest that AIC is genetically heterogeneous with implicated genes converging on molecular pathways central to cortical development.


Assuntos
Síndrome de Aicardi , Masculino , Feminino , Animais , Camundongos , Síndrome de Aicardi/genética , Peixe-Zebra/genética , Mapeamento Cromossômico , Genes Ligados ao Cromossomo X/genética , Bioensaio
3.
Hum Mutat ; 42(8): 1030-1041, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34082468

RESUMO

PCDH19 is a nonclustered protocadherin molecule involved in axon bundling, synapse function, and transcriptional coregulation. Pathogenic variants in PCDH19 cause infantile-onset epilepsy known as PCDH19-clustering epilepsy or PCDH19-CE. Recent advances in DNA-sequencing technologies have led to a significant increase in the number of reported PCDH19-CE variants, many of uncertain significance. We aimed to determine the best approaches for assessing the disease relevance of missense variants in PCDH19. The application of the American College of Medical Genetics and Association for Molecular Pathology (ACMG-AMP) guidelines was only 50% accurate. Using a training set of 322 known benign or pathogenic missense variants, we identified MutPred2, MutationAssessor, and GPP as the best performing in silico tools. We generated a protein structural model of the extracellular domain and assessed 24 missense variants. We also assessed 24 variants using an in vitro reporter assay. A combination of these tools was 93% accurate in assessing known pathogenic and benign PCDH19 variants. We increased the accuracy of the ACMG-AMP classification of 45 PCDH19 variants from 50% to 94%, using these tools. In summary, we have developed a robust toolbox for the assessment of PCDH19 variant pathogenicity to improve the accuracy of PCDH19-CE variant classification.


Assuntos
Caderinas , Epilepsia , Caderinas/genética , Humanos , Mutação de Sentido Incorreto , Protocaderinas , Análise de Sequência de DNA
4.
Neurology ; 96(18): e2251-e2260, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34038384

RESUMO

OBJECTIVE: To identify the causative gene in a large unsolved family with genetic epilepsy with febrile seizures plus (GEFS+), we sequenced the genomes of family members, and then determined the contribution of the identified gene to the pathogenicity of epilepsies by examining sequencing data from 2,772 additional patients. METHODS: We performed whole genome sequencing of 3 members of a GEFS+ family. Subsequently, whole exome sequencing data from 1,165 patients with epilepsy from the Epi4K dataset and 1,329 Australian patients with epilepsy from the Epi25 dataset were interrogated. Targeted resequencing was performed on 278 patients with febrile seizures or GEFS+ phenotypes. Variants were validated and familial segregation examined by Sanger sequencing. RESULTS: Eight previously unreported missense variants were identified in SLC32A1, coding for the vesicular inhibitory amino acid cotransporter VGAT. Two variants cosegregated with the phenotype in 2 large GEFS+ families containing 8 and 10 affected individuals, respectively. Six further variants were identified in smaller families with GEFS+ or idiopathic generalized epilepsy (IGE). CONCLUSION: Missense variants in SLC32A1 cause GEFS+ and IGE. These variants are predicted to alter γ-aminobutyric acid (GABA) transport into synaptic vesicles, leading to altered neuronal inhibition. Examination of further epilepsy cohorts will determine the full genotype-phenotype spectrum associated with SLC32A1 variants.


Assuntos
Epilepsia Generalizada/diagnóstico , Epilepsia Generalizada/genética , Variação Genética/genética , Mutação de Sentido Incorreto/genética , Convulsões Febris/diagnóstico , Convulsões Febris/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Feminino , Estudos de Associação Genética/métodos , Humanos , Masculino , Linhagem
5.
Hum Mutat ; 42(7): 835-847, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33847015

RESUMO

The pioneering discovery research of X-linked intellectual disability (XLID) genes has benefitted thousands of individuals worldwide; however, approximately 30% of XLID families still remain unresolved. We postulated that noncoding variants that affect gene regulation or splicing may account for the lack of a genetic diagnosis in some cases. Detecting pathogenic, gene-regulatory variants with the same sensitivity and specificity as structural and coding variants is a major challenge for Mendelian disorders. Here, we describe three pedigrees with suggestive XLID where distinctive phenotypes associated with known genes guided the identification of three different noncoding variants. We used comprehensive structural, single-nucleotide, and repeat expansion analyses of genome sequencing. RNA-Seq from patient-derived cell lines, reverse-transcription polymerase chain reactions, Western blots, and reporter gene assays were used to confirm the functional effect of three fundamentally different classes of pathogenic noncoding variants: a retrotransposon insertion, a novel intronic splice donor, and a canonical splice variant of an untranslated exon. In one family, we excluded a rare coding variant in ARX, a known XLID gene, in favor of a regulatory noncoding variant in OFD1 that correlated with the clinical phenotype. Our results underscore the value of genomic research on unresolved XLID families to aid novel, pathogenic noncoding variant discovery.


Assuntos
Deficiência Intelectual , Expressão Gênica , Genes Ligados ao Cromossomo X , Genômica , Humanos , Deficiência Intelectual/diagnóstico , Linhagem
6.
NPJ Genom Med ; 5(1): 53, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33298948

RESUMO

USP9X is an X-chromosome gene that escapes X-inactivation. Loss or compromised function of USP9X leads to neurodevelopmental disorders in males and females. While males are impacted primarily by hemizygous partial loss-of-function missense variants, in females de novo heterozygous complete loss-of-function mutations predominate, and give rise to the clinically recognisable USP9X-female syndrome. Here we provide evidence of the contribution of USP9X missense and small in-frame deletion variants in USP9X-female syndrome also. We scrutinise the pathogenicity of eleven such variants, ten of which were novel. Combined application of variant prediction algorithms, protein structure modelling, and assessment under clinically relevant guidelines universally support their pathogenicity. The core phenotype of this cohort overlapped with previous descriptions of USP9X-female syndrome, but exposed heightened variability. Aggregate phenotypic information of 35 currently known females with predicted pathogenic variation in USP9X reaffirms the clinically recognisable USP9X-female syndrome, and highlights major differences when compared to USP9X-male associated neurodevelopmental disorders.

7.
Front Mol Neurosci ; 13: 12, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116545

RESUMO

Multiple TREX mRNA export complex subunits (e.g., THOC1, THOC2, THOC5, THOC6, THOC7) have now been implicated in neurodevelopmental disorders (NDDs), neurodegeneration and cancer. We previously implicated missense and splicing-defective THOC2 variants in NDDs and a broad range of other clinical features. Here we report 10 individuals from nine families with rare missense THOC2 variants including the first case of a recurrent variant (p.Arg77Cys), and an additional individual with an intragenic THOC2 microdeletion (Del-Ex37-38). Ex vivo missense variant testing and patient-derived cell line data from current and published studies show 9 of the 14 missense THOC2 variants result in reduced protein stability. The splicing-defective and deletion variants result in a loss of small regions of the C-terminal THOC2 RNA binding domain (RBD). Interestingly, reduced stability of THOC2 variant proteins has a flow-on effect on the stability of the multi-protein TREX complex; specifically on the other NDD-associated THOC subunits. Our current, expanded cohort refines the core phenotype of THOC2 NDDs to language disorder and/or ID, with a variable severity, and disorders of growth. A subset of affected individuals' has severe-profound ID, persistent hypotonia and respiratory abnormalities. Further investigations to elucidate the pathophysiological basis for this severe phenotype are warranted.

9.
NPJ Genom Med ; 3: 33, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564460

RESUMO

Cerebral palsy (CP) is the most frequent movement disorder of childhood affecting 1 in 500 live births in developed countries. We previously identified likely pathogenic de novo or inherited single nucleotide variants (SNV) in 14% (14/98) of trios by exome sequencing and a further 5% (9/182) from evidence of outlier gene expression using RNA sequencing. Here, we detected copy number variants (CNV) from exomes of 186 unrelated individuals with CP (including our original 98 trios) using the CoNIFER algorithm. CNV were validated with Illumina 850 K SNP arrays and compared with RNA-Seq outlier gene expression analysis from lymphoblastoid cell lines (LCL). Gene expression was highly correlated with gene dosage effect. We resolved an additional 3.7% (7/186) of this cohort with pathogenic or likely pathogenic CNV while a further 7.7% (14/186) had CNV of uncertain significance. We identified recurrent genomic rearrangements previously associated with CP due to 2p25.3 deletion, 22q11.2 deletions and duplications and Xp monosomy. We also discovered a deletion of a single gene, PDCD6IP, and performed additional zebrafish model studies to support its single allele loss in CP aetiology. Combined SNV and CNV analysis revealed pathogenic and likely pathogenic variants in 22.7% of unselected individuals with CP.

10.
Nat Genet ; 45(5): 546-51, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23542697

RESUMO

The majority of epilepsies are focal in origin, with seizures emanating from one brain region. Although focal epilepsies often arise from structural brain lesions, many affected individuals have normal brain imaging. The etiology is unknown in the majority of individuals, although genetic factors are increasingly recognized. Autosomal dominant familial focal epilepsy with variable foci (FFEVF) is notable because family members have seizures originating from different cortical regions. Using exome sequencing, we detected DEPDC5 mutations in two affected families. We subsequently identified mutations in five of six additional published large families with FFEVF. Study of families with focal epilepsy that were too small for conventional clinical diagnosis with FFEVF identified DEPDC5 mutations in approximately 12% of families (10/82). This high frequency establishes DEPDC5 mutations as a common cause of familial focal epilepsies. Shared homology with G protein signaling molecules and localization in human neurons suggest a role of DEPDC5 in neuronal signal transduction.


Assuntos
Epilepsias Parciais/genética , Exoma/genética , Predisposição Genética para Doença/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Mutação/genética , Proteínas Repressoras/genética , Adolescente , Adulto , Animais , Estudos de Casos e Controles , Células Cultivadas , Criança , Pré-Escolar , Estudos de Coortes , Biologia Computacional , Epilepsias Parciais/diagnóstico , Feminino , Imunofluorescência , Proteínas Ativadoras de GTPase , Ligação Genética , Genótipo , Humanos , Lactente , Masculino , Camundongos , Pessoa de Meia-Idade , Neurônios/citologia , Neurônios/metabolismo , Linhagem , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Adulto Jovem
12.
Am J Hum Genet ; 90(1): 152-60, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22243967

RESUMO

Benign familial infantile epilepsy (BFIE) is a self-limited seizure disorder that occurs in infancy and has autosomal-dominant inheritance. We have identified heterozygous mutations in PRRT2, which encodes proline-rich transmembrane protein 2, in 14 of 17 families (82%) affected by BFIE, indicating that PRRT2 mutations are the most frequent cause of this disorder. We also report PRRT2 mutations in five of six (83%) families affected by infantile convulsions and choreoathetosis (ICCA) syndrome, a familial syndrome in which infantile seizures and an adolescent-onset movement disorder, paroxysmal kinesigenic choreoathetosis (PKC), co-occur. These findings show that mutations in PRRT2 cause both epilepsy and a movement disorder. Furthermore, PRRT2 mutations elicit pleiotropy in terms of both age of expression (infancy versus later childhood) and anatomical substrate (cortex versus basal ganglia).


Assuntos
Atetose/genética , Coreia/genética , Epilepsia Neonatal Benigna/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Convulsões/genética , Idade de Início , Animais , Sequência de Bases , Encéfalo/patologia , Pré-Escolar , Cromossomos Humanos Par 16/genética , Humanos , Lactente , Masculino , Camundongos , Dados de Sequência Molecular , Mutação , Linhagem
13.
Am J Hum Genet ; 88(5): 657-63, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21549339

RESUMO

The progressive myoclonus epilepsies (PMEs) are a group of predominantly recessive disorders that present with action myoclonus, tonic-clonic seizures, and progressive neurological decline. Many PMEs have similar clinical presentations yet are genetically heterogeneous, making accurate diagnosis difficult. A locus for PME was mapped in a consanguineous family with a single affected individual to chromosome 17q21. An identical-by-descent, homozygous mutation in GOSR2 (c.430G>T, p.Gly144Trp), a Golgi vesicle transport gene, was identified in this patient and in four apparently unrelated individuals. A comparison of the phenotypes in these patients defined a clinically distinct PME syndrome characterized by early-onset ataxia, action myoclonus by age 6, scoliosis, and mildly elevated serum creatine kinase. This p.Gly144Trp mutation is equivalent to a loss of function and results in failure of GOSR2 protein to localize to the cis-Golgi.


Assuntos
Mutação , Epilepsias Mioclônicas Progressivas/genética , Proteínas Qb-SNARE/genética , Degenerações Espinocerebelares/genética , Sequência de Aminoácidos , Criança , Consanguinidade , Feminino , Genes Recessivos , Marcadores Genéticos , Complexo de Golgi/genética , Homozigoto , Humanos , Escore Lod , Masculino , Dados de Sequência Molecular , Epilepsias Mioclônicas Progressivas/patologia , Linhagem , Fenótipo , Proteínas SNARE/genética , Degenerações Espinocerebelares/patologia
14.
Am J Hum Genet ; 87(3): 371-5, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20797691

RESUMO

We characterized an autosomal-recessive syndrome of focal epilepsy, dysarthria, and mild to moderate intellectual disability in a consanguineous Arab-Israeli family associated with subtle cortical thickening. We used multipoint linkage analysis to map the causative mutation to a 3.2 Mb interval within 16p13.3 with a LOD score of 3.86. The linked interval contained 160 genes, many of which were considered to be plausible candidates to harbor the disease-causing mutation. To interrogate the interval in an efficient and unbiased manner, we used targeted sequence enrichment and massively parallel sequencing. By prioritizing unique variants that affected protein translation, a pathogenic mutation was identified in TBC1D24 (p.F251L), a gene of unknown function. It is a member of a large gene family encoding TBC domain proteins with predicted function as Rab GTPase activators. We show that TBC1D24 is expressed early in mouse brain and that TBC1D24 protein is a potent modulator of primary axonal arborization and specification in neuronal cells, consistent with the phenotypic abnormality described.


Assuntos
Proteínas de Transporte/genética , Epilepsias Parciais/complicações , Epilepsias Parciais/genética , Proteínas Ativadoras de GTPase/genética , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Mutação/genética , Sequência de Aminoácidos , Animais , Axônios/metabolismo , Proteínas de Transporte/química , Forma Celular , Mapeamento Cromossômico , Feminino , Proteínas Ativadoras de GTPase/química , Humanos , Lactente , Masculino , Proteínas de Membrana , Camundongos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso , Neurônios/patologia , Fases de Leitura Aberta/genética , Linhagem , Síndrome
15.
Mol Cancer ; 3: 22, 2004 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-15301688

RESUMO

BACKGROUND: The CBFA2T3 locus located on the human chromosome region 16q24.3 is frequently deleted in breast tumors. CBFA2T3 gene expression levels are aberrant in breast tumor cell lines and the CBFA2T3B isoform is a potential tumor suppressor gene. In the absence of identified mutations to further support a role for this gene in tumorigenesis, we explored whether the CBFA2T3B promoter region is aberrantly methylated and whether this correlates with expression. RESULTS: Aberrant hypo and hypermethylation of the CBFA2T3B promoter was detected in breast tumor cell lines and primary breast tumor samples relative to methylation index interquartile ranges in normal breast counterpart and normal whole blood samples. A statistically significant inverse correlation between aberrant CBFA2T3B promoter methylation and gene expression was established. CONCLUSION: CBFA2T3B is a potential breast tumor suppressor gene affected by aberrant promoter methylation and gene expression. The methylation levels were quantitated using a second-round real-time methylation-specific PCR assay. The detection of both hypo and hypermethylation is a technicality regarding the methylation methodology.


Assuntos
Neoplasias da Mama/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , DNA de Neoplasias/química , DNA de Neoplasias/genética , Regulação da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Metilação , Fosfoproteínas/química , Subunidades Proteicas/genética , Proteínas Repressoras/química , Análise de Sequência de DNA/métodos , Sulfitos/metabolismo , Proteínas Supressoras de Tumor/química
16.
J Hum Genet ; 49(6): 308-311, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15148587

RESUMO

The 16p13.3 breakpoints of two de novo translocations of chromosome 16, t(1;16) and t(14;16), were shown by initial mapping studies to have physically adjacent breakpoints. The translocations were ascertained in patients with abnormal phenotypes characterized by predominant epilepsy in one patient and mental retardation in the other. Distamycin/DAPI banding showed that the chromosome 1 breakpoint of the t(1;16) was in the pericentric heterochromatin therefore restricting potential gene disruption to the 16p13.3 breakpoint. The breakpoints of the two translocations were localized to a region of 3.5 and 115 kb respectively and were approximately 900 kb apart. The mapping was confirmed by fluorescence in situ hybridization (FISH) of clones that spanned the breakpoints to metaphase spreads derived from the patients. The mapping data showed both translocations disrupted the ataxin-2-binding protein 1 ( A2BP1) gene that encompasses a large genomic region of 1.7 Mb. A2BP1 encodes a protein that is known to interact with the spinocerebellar ataxia type 2 ( SCA2) protein. It is proposed that disruption of the A2BP1 gene is a cause of the abnormal phenotype of the two patients. Ninety-six patients with sporadic epilepsy and 96 female patients with mental retardation were screened by SSCP for potential mutations of A2BP1. No mutations were found, suggesting that disruption of the A2BP1 gene is not a common cause of sporadic epilepsy or mental retardation.


Assuntos
Cromossomos Humanos Par 16 , Epilepsia/genética , Deficiência Intelectual/genética , Proteínas de Ligação a RNA/genética , Translocação Genética , Adolescente , Ataxinas , Pré-Escolar , Mapeamento Cromossômico , Éxons , Feminino , Humanos , Hibridização in Situ Fluorescente , Íntrons , Masculino , Modelos Genéticos , Mutação , Proteínas do Tecido Nervoso , Fenótipo , Mapeamento Físico do Cromossomo , Polimorfismo Conformacional de Fita Simples , Proteínas/genética , Fatores de Processamento de RNA
17.
Genomics ; 80(3): 303-10, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12213200

RESUMO

Loss of heterozygosity (LOH) of chromosome 16q24.3 is a common genetic alteration observed in invasive ductal and lobular breast carcinomas. We constructed a physical map and generated genomic DNA sequence data spanning 2.4 Mb in this region. Detailed in silico and in vitro analyses of the genomic sequence data enabled the identification of 104 genes. It was hypothesized that tumor-suppressor genes would exhibit marked mRNA expression variability in a panel of breast cancer cell lines as a result of downregulation due to mutation or hypermethylation. We examined the mRNA expression profiles of the genes identified at 16q24.3 in normal breast, a normal breast epithelial cell line, and several breast cancer cell lines exhibiting 16q24.3 LOH. Three of the genes, CYBA, Hs.7970, and CBFA2T3, exhibited variability ten times higher than the baseline. The possible role of these genes as tumor suppressors is discussed.


Assuntos
Neoplasias da Mama/genética , Cromossomos Humanos Par 16 , Genes Supressores de Tumor , Perda de Heterozigosidade , Feminino , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Mapeamento Físico do Cromossomo , Análise de Sequência de DNA
18.
Cancer Res ; 62(16): 4599-604, 2002 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12183414

RESUMO

Numerous cytogenetic and molecular studies of breast cancer have identified frequent loss of heterozygosity (LOH) of the long arm of human chromosome 16. On the basis of these data, the likely locations of breast cancer tumor suppressor genes are bands 16q22.1 and 16q24.3. We have mapped the CBFA2T3 (MTG16) gene, previously cloned as a fusion partner of the AML1 protein from a rare (16;21) leukemia translocation, to the 16q24.3 breast cancer LOH region. The expression of CBFA2T3 was significantly reduced in a number of breast cancer cell lines and in primary breast tumors, including early ductal carcinomas in situ, when compared with nontransformed breast epithelial cell lines and normal breast tissue. Reintroduction of CBFA2T3 into different breast tumor derived cell lines with decreased expression of this gene reduced colony growth on plastic and in soft agar. CBFA2T3 was shown to function as a transcriptional repressor when tethered to the GAL4 DNA-binding domain in a reporter gene assay and, therefore, has the potential to be a transcriptional repressor in normal breast epithelial cells. Taken together, these findings suggest that CBFA2T3 is a likely candidate for the breast cancer tumor suppressor gene that is the target for the frequent 16q24 LOH in breast neoplasms.


Assuntos
Neoplasias da Mama/genética , Cromossomos Humanos Par 16/genética , Genes Supressores de Tumor , Perda de Heterozigosidade , Fosfoproteínas , Proteínas/genética , Proteínas Supressoras de Tumor , Divisão Celular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Biossíntese de Proteínas , Proteínas/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , Proteínas Repressoras , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...